I B. Tech II Semester Regular Examinations, December - 2020 BASICS OF ELECTRICAL \& ELECTRONICS ENGINEERING
 (Common to CE, ME, CSE and IT)

Time : 3 hours
Max. Marks: 60

Note : Answer ONE question from each unit (5 $\times \mathbf{1 2} \mathbf{= 6 0}$ Marks)

UNIT - I

1. a) Explain briefly about inductance and capacitance? Derive the necessary 4 M expressions for power and energy.
b) Give the statements of KCL and KVL with necessary diagrams and 4M explanations.
c) Define peak factor and give its relation with r.m.s. value.
(OR)
2. a) Identify the differences between series and parallel circuits.
b) Convert the following Π-network into its equivalent T -network using star 6 M
delta transformation.

UNIT - II
3. a) Explain the principle of operation of DC generator. 6 M
b) Explain the principle of operation of a DC motor. Classify the DC motors 6 M
with the help of voltage and power equations.
(OR)
4. a) Develop the emf equation of a DC generator. 6 M
b) A 4-pole DC motor is fed at 400 V and taken armature current of 35 A . The 6 M resistance of armature circuit is 0.2 ohm . The armature winding is wave connected with 800 conductors useful flux per pole is 0.023 wb . Calculate speed of the motor.

UNIT - III

5. a) Explain the losses that occur in a transformer.
b) Explain the construction of slip ring induction motor. 4 M
c) Write the applications of induction motors
(OR)
6. a) Explain the principle of operation of single phase transformer. 6 M
b) Explain the construction of squirrel cage induction motor. 6 M

UNIT -IV

7. a) Differentiate cut-in voltage and breakdown voltage in diodes. 4M
b) Draw the circuit diagram of full wave rectifier having two diodes and explain 4M its operation.
c) Define reverse breakdown voltage in diode. 4M
(OR)
8. a) Draw the characteristics of zener diode and write its applications 6M
b) Define avalanche region in diode characteristics. 6M
UNIT -V
9. a) Explain the operation of PNP transistor and draw its characteristics 6M
b) Draw the circuit and explain the characteristics of CB configuration. 6M
(OR)
10. a) Draw the circuit and explain the characteristics of CE configuration. 6M
b) Draw the input characteristics of CB configuration when $\mathrm{V}_{\mathrm{CB} 2}>\mathrm{V}_{\mathrm{CB} 1}$. Explain 6Mthe operation.

I B. Tech II Semester Regular Examinations, December - 2020 ENGINEERING MECHANICS
(Common to CE and ME)

Note : Answer ONE question from each unit ($\mathbf{5 \times 1 2 = 6 0} \mathbf{~ M a r k s)}$

UNIT - I

1. a) State the law of triangle of forces and Lami's theorem.
b) An electric light fixture of weight $\mathrm{Q}=178 \mathrm{~N}$ is supported as shown. Determine the tensile forces S_{1} and S_{2} in the wires BA and BC if their angles of inclination are as shown

(OR)
2. a) Tension in cable $B C$ is 725 N . Determine the resultant of forces exerted at point B of beam AB.

b) Explain the following with examples
(i) Concurrent forces
(ii) Coplanar forces
(iii) Collinear forces

UNIT - II

3. a) Using the method of joints, find the axial forces in all the members of a truss with the loading as shown.

b) Define the friction and give its types
(OR)
4. a) Describe the method of sections for finding forces in the members of a perfect truss.
b) Two blocks of weights W_{1} and W_{2} connected with a string rest on a rough inclined plane as shown. If the coefficient of friction are 0.2 and 0.3 for the blocks respectively and $W_{1}=W_{2}=50 \mathrm{~N}$, find the value of α for which the sliding will impend.

UNIT - III
5. a) A semi circular area is removed from a trapezium as shown. Determine the centroid of remaining portion (shaded portion) (All dimensions are in mm).

b) Calculate the moment of inertia of an I section having equal flanges $30 \mathrm{~mm} x$ 10 mm and web $30 \mathrm{~mm} \times 10 \mathrm{~mm}$ about horizontal centroidal axis.
(OR)
6. a) A circular hole of 50 mm diameter is cut out by a circular disk of 100 mm diameter as shown in figure. Find the centre of gravity of the section from point A.

b) Find the moment of inertia of a hollow section shown about horizontal centroidal axis.

7. a) A car is moving with a velocity of $15 \mathrm{~m} / \mathrm{sec}$. The car is brought to rest by applying brakes in 5 seconds. Determine i) the retardation ii) distance travelled by car after applying brakes.
b) A particle is dropped from the top of a tower 100 m high. Another particle is projected upwards at the same time from the foot of the tower and meets the first particle at a height of 30 m . Find the velocity with which second particle is projected upwards. Take $g=9.8 \mathrm{~m} / \mathrm{sec}^{2}$
(OR)
8. a) A ball is tossed with a velocity of $20 \mathrm{~m} / \mathrm{s}$ directed vertically upward from a window located at 50 m above the ground. Determine
(i) Elevation of the ball above the ground
(ii) Time and velocity when the ball hit the ground
b) A train starting from rest, is uniformly accelerated. The acceleration at any instant is $\frac{10}{v+1} \mathrm{~m} / \mathrm{s}^{2}$, where v is the velocity of the train in m / s at the instant. Find the distance, in which the train will attain a velocity of 35 kmph

UNIT -V

9. A ball impinges directly on a similar ball at rest. The first ball is reached to rest by the impact. Find the coefficient of restitution, if half of the initial kinetic energy is lost by impact.
(OR)
10. A sphere of mass 1 kg , moving at $3 \mathrm{~m} / \mathrm{s}$, overtakes another sphere of mass 5 kg moving in the same line at $60 \mathrm{~cm} / \mathrm{s}$. Find the loss of kinetic energy during impact and show that the direction of motion of the first sphere is reversed. Take coefficient of restitution as 0.75 .

I B. Tech II Semester Regular Examinations, December - 2020 MATHEMATICS-II
 (Common to ALL Branches)

Time : 3 hours

Max. Marks : 60
Note : Answer ONE question from each unit ($\mathbf{5 \times 1 2 = 6 0}$ Marks)

UNIT - I

1. a) Find a real root of the eq. $\mathrm{x}^{3}-\mathrm{x}-1=0$ correct to three decimal places by
b) Solve the following system of equations by Jacobi's method starting with the
solution ($2,3,0$)
$5 \mathrm{x}-\mathrm{y}+\mathrm{z}=10 ; 2 \mathrm{x}+4 \mathrm{y}=12 ; \quad \mathrm{x}+\mathrm{y}+5 \mathrm{z}=-1$
(OR)
2. a) Find a real root of the equation $x^{4}-x-9=0$ by Newton-Raphson method correct to three places of decimal.
b) Use method of false position to find the $4^{\text {th }}$ root of 32 correct to three decimal places.
UNIT - II
3. a) Prove the following relations between the operators.
(i) $\Delta=\mathrm{E}-1$
(ii) $\nabla=1-\mathrm{E}^{-1}$
(iii) $\delta=\mathrm{E}^{1 / 2}-\mathrm{E}^{-1 / 2}$
(iv) $\mu=\frac{1}{2}\left(\mathrm{E}^{1 / 2}+\mathrm{E}^{-1 / 2}\right)$
b) From the following table estimate the number of students who obtained marks between 40 and 45 by Newton's formula.

Marks	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No. of Stude nts	31	42	51	35	31

(OR)
4. a) Use Gauss's forward formula to evaluate y_{30}, given that $\mathrm{y}_{21}=18.4708 ; \mathrm{y}_{25}=$ $17.8144 ; \quad \mathrm{y}_{29}=17.1070 ; \mathrm{y}_{33}=16.3432 ; \mathrm{y}_{37}=15.5154$.
b) Use Newton's divided difference formula to find $\mathrm{f}(9)$ for the following data

x	5	7	11	13	17
$\mathrm{f}(\mathrm{x})$	150	392	1452	2366	5202
UNIT - III					

5. a) Evaluate $\int_{0}^{6} \frac{1}{1+\mathrm{x}^{2}} \mathrm{dx}$ using (i) Trapezoidal rule
(ii) Simpson's $3 / 8$ rule by dividing into 6 equal sub intervals.
b) Apply Runge-Kutta Method to find an approximate value of y for $\mathrm{x}=0.2$ in steps of $0.1, \mathrm{if} \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{x}+\mathrm{y}^{2}$ given that $\mathrm{y}=1$ when $\mathrm{x}=0$.
(OR)
6. a) Using Picard's method obtain a solution up to the fifth approximation of the equation $\frac{d y}{d x}=x+y$ such that $y=1$ when $x=0$.
b) Using Modified Euler's method, find approximate value of y when $\mathrm{x}=0.3$, given $\frac{d y}{d x}=x+y$ and $y=1$ when $x=0$.

UNIT -IV
7. a) Find $L\left(t^{2} e^{-2 t}\right.$ cost $)$
b) Using Laplace transform, solve $\left(D^{2}+1\right) x=t \cos 2 t$, given that $x=0, \frac{d x}{d t}=0$ at $\mathrm{t}=0$.
(OR)
8. a) Evaluate $\int_{0}^{\infty} \frac{e^{-t}-e^{-2 t}}{t} d t$, by using the Laplace transform.
b) Find $\mathrm{L}^{-1}\left\{\frac{1}{\mathrm{~s}\left(\mathrm{~s}^{2}+2 \mathrm{~s}+2\right)}\right\}$ by using convolution theorem.

UNIT -V
9. a) State Dirichlet's conditions for the expansion of a function in Fourier series.
b) Find the Fourier cosine series over the interval $0<x<2$ for the function $\mathrm{f}(\mathrm{x})=\mathrm{x}$.
(OR)
10. a) State Fourier integral theorem.
b) Find the Fourier transform of $f(x)=\left\{\begin{array}{cc}-1 ; & -1 \leq x<0 \\ 1 ; & 0 \leq x \leq 1 \\ 0 ; \text { else where }\end{array}\right.$

I B. Tech II Semester Regular Examinations, December - 2020 MATHEMATICS-III
 (Common to ALL Branches)

Time: 3 hours
Max. Marks: 60

Note : Answer ONE question from each unit (5 $\times \mathbf{1 2}=\mathbf{6 0}$ Marks)

UNIT - I

1. a) Find rank of $A=\left[\begin{array}{cccc}-2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1\end{array}\right]$ by reducing into Echelon form.
b) For what values of ' a ' and ' b ' the system of equations

$$
x+y+z=6 ; x+2 y+3 z=10 ; x+2 y+a z=b \text { has }
$$

i) No solution
ii) Unique solution
iii) Infinite number of solutions.

OR

2. a) Find the Eigen values and the corresponding Eigen vectors of the matrix

$$
A=\left[\begin{array}{ccc}
8 & -8 & -2 \\
4 & -3 & -2 \\
3 & -4 & 1
\end{array}\right]
$$

b) Solve $5 \mathrm{x}+10 \mathrm{y}+\mathrm{z}=28 ; 4 \mathrm{x}+8 \mathrm{y}+3 \mathrm{z}=29 ; \mathrm{x}+\mathrm{y}+\mathrm{z}=6$ by using Gauss

Jordan method

UNIT - II

3. a) Verify Cayley-Hamilton theorem for $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ and hence find A^{-1} and A^{4}.
b) Reduce the matrix $A=\left[\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right]$ into diagonal matrix and find A^{6}.

OR

4. Reduce the quadratic form $6 x^{2}+3 y^{2}+3 z^{2}-4 x y+4 x z-2 y z$ to a canonical form by orthogonal transformation method. Find Index, Rank, Signature and Nature of the quadratic form.

UNIT - III

5. a) Calculate the angle between the normal to the surface $x y-z^{2}=9$ at points $(4,1,2)$ and ($3,3,-3$).
b) Find the values of a and b so that the surfaces $a x^{2}-b y z=(a+2) x$ and $4 x^{2} y+z^{3}=4$ intersect orthogonally at $(1,-1,2)$.

OR

6. a) Find a, b, c such that $\bar{F}=(2 x+3 y+a z) \bar{i}+(b x+2 y+3 z) \bar{j}+(2 x+c y+3 z) \bar{k}$ is irrotational.
b) Show that $\nabla^{2} r^{n}=n(n+1) r^{n-2}$.

UNIT - IV

7. Apply Green's theorem to evaluate $\oint_{C}\left(2 x y-x^{2}\right) d x+\left(x^{2}+y^{2}\right) d y$ where C is the region bounded by $x=y^{2}$ and $y=x^{2}$.

OR

8. a) If $\bar{F}=\left(5 x y-6 x^{2}\right) \bar{i}+(2 y-4 x) \bar{j}$ and C is the curve $y=x^{3}$ in xy - plane. 6 M Evaluate the line integral $\int_{C} \bar{F} . d \bar{r}$ from $(1,1)$ to $(2,8)$.
b) Verify Stoke's theorem for $\bar{F}=\left(x^{2}+y^{2}\right) \bar{i}-2 x y \bar{j}$ where taken around the rectangle bounded by the lines $\mathrm{x}= \pm \mathrm{a}, \mathrm{y}=0, \mathrm{y}=\mathrm{b}$.

UNIT - V

9. a) Form a partial differential equation by eliminating arbitrary function from the equation $z=x y+f\left(x^{2}+y^{2}\right)$
b) Solve $(y z) p+(z x) q=x y$

OR

10. a) Solve $z^{2}\left(p^{2}+q^{2}+1\right)=1$
b) Solve $\left(D^{2}-4 D D^{\prime}+4 D^{\prime 2}\right) z=0$

I B. Tech II Semester Regular Examinations, December - 2020 ENGINEERING PHYSICS

(Civil Engineering)

Time: 3 hours
Max. Marks: 60
Note : Answer ONE question from each unit (5 $\times 12=\mathbf{6 0}$ Marks)

UNIT - I

1. a) Under what conditions, the sustained interference is obtained
b) Prove that in reflected light, diameter of the dark rings are proportional to the square root of natural numbers. What will happen if a little water is introduced between the lens and plate?
c) In Newton's ring experiment the diameter of the $15^{\text {th }}$ ring was found to be 0.590 cm and that of the $5^{\text {th }}$ ring 0.336 cm . If the radius of the planoconvex lens is 100 cm , calculate the wavelength of the light used.
(OR)
2. a) State and explain Rayleigh's criterion for limit of resolution
b) Define resolving power of an optical instrument. Discuss in detail the 8M resolving power of microscope and telescope

UNIT - II
3. a) How do radiation interact with matter
b) Obtain the relation between the three Einstein's coefficients 8 M
c) Mention any two applications of lasers in four different fields 2M
(OR)
4. a) Define hologram. Discuss the principle of holography with suitable diagram
b) Describe the recording and reconstruction processes in holography

UNIT - III

5. a) Define magnetic permeability and susceptibility. How they are related?
b) What is hysteresis? Explain ferromagnetic hysteresis on the basis of domains
c) The magnetic susceptibility of aluminium is 2.3×10^{-5}. Find its permeability.
(OR)
6. a) Write a short note on frequency dependence of polarization.
b) Define the electric vectors \mathbf{P}, \mathbf{E} and \mathbf{D}. Show that $\mathbf{D}=\mathbf{\epsilon} \mathbf{E}+\mathbf{P}$.
c) If an ionic crystal is subjected to an electric field of $2000 \mathrm{~V} / \mathrm{m}$ and the 2M resulting polarization is $6.4 \times 10^{-8} \mathrm{C} / \mathrm{m}^{2}$, then calculate the relative permittivity of the crystal.
7. a) Explain clearly the various factors affecting the acoustics of building by 8Mreverberation and how it can be minimized.
b) Describe a method for determination of the sound absorption coefficient 4M of a material.

(OR)

8. a) What are ultrasonic waves? Discuss their properties. 4M
b) With necessary circuit diagram, explain the production of ultrasonic 8M waves using piezoelectric crystal.
UNIT -V
9. a) What is Hook's law? Discuss stress-strain diagram 4M
b) Define bending moment of a beam. Derive the expression for bending 8M moment of a beam.
(OR)
10. a) Explain the terms elasticity and elastic limit. 4M
b) Obtain the relation as $\frac{9}{Y}=\frac{3}{\eta}+\frac{1}{K}$ 8M
